HUMAN HepaRG™ CELLS, A USEFUL IN VITRO MODEL FOR CELL-BASED CHOLESTASIS ASSAYS

F.Bree (§), S.Camus(ǂ), D.Steen(ǂ) and C.Guguen-Guillouzo (#,‡)

(§)Eurosafe, Parc d'affaires de la Breteche, Bat B1, F-35760- Saint Grégoire – francoise.bree@eurosafe.fr
(ǂ)Inserm UMT991, F-35000-Rennes (‡)Biopredic International, Parc d’aﬀaires de la Breteche, Bat A4, F-35760- Saint Grégoire

Introduction
HepaRG™ is a bipotent, human hepatoma line with a genetic profile that is in many ways similar to primary human hepatocytes. HepaRG™ influx and efflux transporters were correctly localized to canalicular (BSEP, MRP2, MDR3) or baso-lateral (NTCP, MRP3) membrane domains and were functional (1).

Interestingly, cell imaging showed higher bile canalicular contraction/relaxation activity in HepaRG-hepatocytes. Total bile acids production by HepaRG-hepatocytes showed high inter-assay reproducibility and was in the same range as in primary human hepatocyte cultures with 316-320 pmol/10⁶ hepatocytes/day (2).

Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in human Hepatocytes and suggest that HepaRG™ cells represent a suitable model for studying hepatobiliary transporters and drug induced cholestasis.

Material and methods

Cell cultures
HepaRG™ cells were seeded at a density of 2.6×10⁴ cells/cm² in Williams E medium supplemented with 10% fetal bovine serum, 100 U/mL penicillin,100 mg/mL strep tomycin, 5 mg/mL insulin, 2 mM glutamine, and 50 mM hydrocortisone hemisuccinate.

After 2 weeks, HepaRG™ cells were shifted to the same medium supplemented with 2% dimethyl sulfoxide for a further 2 weeks in order to obtain confluent differentiated cultures with maximum hepatocyte functional activities. At this time, these cultures contained hepatocyte-like and progenitors/primitive biliary cells.

Carboxy dichlorofluorescein excretion
After 2h exposure with molecules known to be cholestatic Chlorpromazine (CPZ), Cyclosporine A(CsA) or Fasudil in serum-free medium, cells were incubated for 20 min at 37°C with 3 µM 3(6)-carbox-2,7'-dichlorofluorescein diacetate (CDFDA), which is hydrolyzed by intracellular esterases to 3(6)-carboxy-2,7'-dichlorofluorescein (CDF), a substrate of MRP2 transporter.

Neosynthesis of bile acid measurement
The supernatant was collected and extracted using a SPE cartridge. BA content was measured using HPLC-MS/MS.

Results

Bile canalicular constriction induced by CPZ
Cells were treated with 50 µM CPZ for 30 minutes or 2 hours. F-actin was localized by using phallolidin-fluorprobe. Nuclei were stained in blue (Hoechst).

F-actin shows a predominant pericanalicular distribution in untreated cells and a less intense staining around the canalicular region in CPZ-treated cells. Although untreated cells show round shaped canalicular, CPZ-treated cells exhibit retracted bile canalicular (x20 magnification [a-c]). Arrows indicate bile canalicular. Details of one canaliculus of untreated cells (d) and 2-hour CPZ-treated cells (e) are shown. Imaging quantification was done by using cellomics software.

HepaRG-Heptocytes were treated without or with 50µM CPZ, or with 50µM Fasudil for 2 hours. CPZ treated cells exhibited canalicular constriction whereas treatment with Fasudil induced dilatation of bile canalicular. Canalicular size was evaluated by CDFDA accumulation (green color).

Neosynthesis of bile acid by HepaRG-hepatocytes
Culture in serum free medium with daily renewal. Comparative levels are produced by HepaRG- and primary human hepatocytes (PHH) with high iner-assay reproducibility for HepaRG cells.

Exposure to CsA induced accumulation of MRP3 and inhibited MRP2 transporter activity in HepaRG-hepatocytes

Discussion and conclusion
Drug-induced intra-hepatic cholestasis is characterized by intra-cellular hepatic accumulation of endogenous BAs which can cause toxicity.

- HepaRG-hepatocytes mimi the biliary function of human hepatocytes
 - Neo-synthesis of bile acids
 - Dynamic of excretion at the biliary pole
- HepaRG-hepatocytes respond to cholestatic drugs:
 - Alteration of transporters activity
 - Change of the bile canalliculi size (dilatation or constriction)
 - Modification of the efflux dynamic

Altogether they highlight new insights in mechanisms implicated in disruption of BA secretion and evidence new potential predictive biomarkers of drug-induced cholestasis using HepaRG™.